CONSTRUCTION OF A MICROCONTROLLER BASED GATE

CHAPTER ONE

1.0 INTRODUCTION

1.1 BACKGROUND OF THE PROJECT

In the past, many systems that are designed by man are normally operated manually. This mode of operation is accompanied with many defects or disadvantages. Some of the disadvantages involve stress undergone by the operator; the operator is also exposed to health hazards when carrying out his or her duties. These health hazards might be in terms of electrocution, skin burn or bruises.

To overcome the above mentioned disadvantages that are associated with manual operation of systems, the recent systems are designed with mechanisms that enable them to carry out the required operations automatically. To this effect, the system carries out the required operation by them. The mechanism of the system can only be altered during servicing of the machine. With automatic operation of systems, the stress involved with handling the systems are reduced drastically.

The automatic gate control system is one of the systems that operate automatically. The system simply detects the presence of object at the front of the gate and then, opens the doors of the gate automatically. It incorporates sensors that are mounted at strategic positions and which has the capability of detecting objects. These systems are used in public offices where people often make use of the doors.

1.2 AIMS AND OBJECTIVE OF THE PROJECT

The main aim of the design is to practically obtain a system that opens and closes a given gate automatically, when there is presence of cars or persons. The system is designed in such a way that it has sensors that senses the presence of people.

1.3 SCOPE OF THE PROJECT

The design and implementation of microcontroller based automatic gate controller utilizes the characteristic operation of both passive and active electronic components such as resistors, capacitors and integrated circuits. The circuit is designed in a prototype forms and it is only meant for indoor demonstration of how the system works. The system also uses a programmable integrated circuit in its control unit. Meanwhile, this project, microcontroller based automatic gate control has sub units such as:

Power supply unit

The control section

The gate drive section

The sensor unit

POWER SUPPLY UNIT

THE GATE DRIVE SECTION

THE CONTROL SECTION

THE SENSOR UNIT

Fig: 1.1. The block diagram of microcontroller based automatic gate control 4

1.4 DEFINITION OF TERMS

Voltage regulation: this is simply, the control of voltage as needed by the design. Voltage regulation ensures that a specific and steady voltage supply is provided for the system operation.

Electromagnetic switch:

this is the contact making that exists between terminal of electronic components. These switches are carried through a process known as electromagnetic induction. Examples of devices that can perform this action is the relay.

Erasable programmable read only memory (EPROM): this is a type of memory device which can be programmed. The device also has program erasing ability if it is to be reprogrammed.

1.5 PROJECT REPORT ORGANIZATION

Five chapters were covered in the course of design and development of this project. The chapters and their contents are as follows:

Chapter one is the introductory chapter that gives the background of the project, aim and objective, the scope and organization of the project.

Chapter Two handles the literature review; information on previous work relevant to the topic.

In chapter three, I discussed the practical system analysis of the project. Also discussed is the requirement analysis, which is all the information, gathered from a wide research on microcontroller over/under voltage protective system.

Chapter four deals with the design procedure, construction steps, packaging and cost of components.

Chapter five contains the test result, summary, conclusion and recommendations for further work.

Order the complete project materials.Pay the sum of #3000

Economics

Leave a Comment

Your email address will not be published. Required fields are marked *